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ABSTRACT

Due to the widespread use of drones in an urban environment,
drones present an increased risk to the safety of urban life.
Reliable detection of drones becomes crucial for countering
the hazard introduced by drones. However, drones are diffi-
cult to detect because of their size and customization. This
paper introduces DDL, a dataset aimed at drone sound de-
tection, classification, and localization via a specially con-
structed set of microphones. As a baseline, we propose a
deep uncertainty-aware framework implementing Conformer
for joint drone classification and localization. We employ het-
eroscedastic loss functions that jointly estimate means and
variances for spatial localization to model prediction uncer-
tainty. Experiments on the DDL dataset demonstrate a clas-
sification accuracy of 99.9% and a Euclidean distance mean
absolute error (MAE) of approximately 16 meters. The un-
certainty estimates are well-calibrated, with coverage closely
matching the expected confidence intervals (68%, 95%, and
99.7%) as defined by the empirical rule, suggesting DDL as a
benchmark dataset for audio-based drone localization.

Index Terms— dataset, drone localization, multi-channel
audio, uncertainty estimation, Conformer, DOA

1. INTRODUCTION

Drones, also known as unmanned aerial vehicles (UAVs),
have gained popularity in recent years due to their ability to
fly autonomously. Autonomous human transport machines
and delivery systems for postal services are among the ap-
plications that have been proposed [1]]. In addition, search
and rescue scenarios involving individuals in emergency cir-
cumstances who must be located swiftly in difficult-to-reach
locations represent a potentially substantial field of applica-
tion. Although video cameras have been used to construct
a variety of UAV-embedded solutions to deal with such sce-
narios [2, 3], several other approaches have been explored.
Apart from the useful applications of drones, the growing
popularity of commercial hobby drones poses unanticipated
hazards to the environment in which we live, such as fear for
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people or potential damage to critical infrastructure. A typical
four-propeller drone is excellent for use in leisure and broad-
casting, but it also makes current defensive systems look like
antiquated legacy technologies. Some mishaps have previ-
ously shown that these drones can easily breach the highest
level of security, such as drones flying near Gatwick airport
back in 2018, which caused a two-day airport closure [4]. As
a result, the ability to detect the presence of a drone is of the
utmost importance to avoid any danger.

Most publicly available drone sound datasets contain a
small number of recordings and are not specifically designed
for drone detection and localization tasks. As a solution, this
study introduces a new dataset, dubbed Drone Detection and
Localization (DDL) to advance research into audio proper-
ties during UAV flights and the development of new drone
sound detection and localization methods. Two types/sizes
of drones were used: DIJI Phantom 4 Pro and DJI Mini
2. To capture drone sounds, a receiver with an 8-channel
cube-shaped microphone array was carefully designed. To
detect and localize drones from the microphone array record-
ings, we leverage recent progress in machine learning-based
methods, such as those for audio classification, e.g., acoustic
scene classification and Direction of Arrival (DOA) estima-
tion in a real-world setting. Early audio classification systems
have considered Mel-frequency cepstrum coefficients [S]] with
Gaussian mixture models [[6]]. Recent research has focused on
using Deep Neural Networks for ambient sound recognition,
such as Convolutional Neural Networks (CNNs) [7]], Recur-
rent Neural Networks (RNNs) [8]], and Transformer-based
architectures [9]. Despite the fact that extensive research
has been conducted for audio classification, little has been
done for drone sound localization. In drone sound local-
ization, uncertainty modeling is crucial for building reliable
systems, as the audio environment is often noisy and un-
predictable. Distinguishing between confident and uncertain
predictions improves decision-making under ambiguity and
enhances system robustness. Conventional methods such as
Bayesian neural networks [10] and Monte Carlo dropout [|11]
model epistemic uncertainty but are computationally expen-
sive. More scalable approaches, such as deep ensembles [[12]],
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Fig. 1: (a) DJI Mini2 Orbits, Guilford, UK, (b) DJI 4 Pro Orbits, Port Talbot, UK, and (c) recording setup

improve robustness but require multiple models. However,
heteroscedastic regression predicts both the mean and
variance of the results in a single forward pass.

This paper presents a dataset for drone sound classifica-
tion and localization. Additionally, we propose a framework
that jointly performs drone classification and localization
using deep learning models while modeling aleatoric uncer-
tainty, which is particularly useful for handling environmental
noise in outdoor drone localization scenarios, through a het-
eroscedastic loss.

2. DATASET DESCRIPTION

This section first reports the hardware used in data collection;
secondly, we describe the recording scenes and session de-
sign; and thirdly, we explain the dataset creation process and
distributions.

2.1. Drones and recording setup

There are two drone types used as sound sources in this
dataset, namely DJI Mini 2 and DJI Phantom 4 Prol These
drones were chosen due to their differences in size, auto-pilot
capabilities, and ease of access to their rich flight logs. Both
drones have similar sensor suites, flight logs, and auto-pilot
capabilities, making the location data more homogeneous and
easier to use, while their differences in size and motor types
increase the diversity of the recorded data. The other useful
feature provided by the chosen drones was their autopilot
capability. The autopilot feature was used in both drones to
automate the recording of flight trajectories. This enables the
data collected to have a more uniform distribution and timing
compared to a remotely operated drone. The DIJI flight logs
provide reliable GPS data, velocity vector, and time stamps
which will be used to localize and synchronize position and
audio of drones with respect to the microphone array, respec-
tively. For the recording setup, a microphone array with eight
channels is used. The microphone heads are located at the

four corners of the box in pairs. The microphone array is de-
signed to be waterproof and is equipped with windjammers.
Each microphone head is connected to a field recorder using
XLR cables. For multi-track recording, Zoom F8N| is used
to capture audio at 96kHz sample rate, resulting in a synced
8-channel .wav output file.

2.2. Data collection and recording scene design

The following elements in the scene were taken into account:
1) different open environments, 2) a diverse set of drone tra-
jectories with respect to (w.r.t) the microphone array. The
recording sessions are located in Port Talbot and Guildford,
UK. The former is a quiet rural environment with less back-
ground noise, and the latter is a suburban environment with
more background noise, such as cars passing and residents
chatting. There are 12 recording sessions in total, and each
session is approximately 10-22 minutes, a variable dictated by
drone battery capacity. Two of the recording sessions exclu-
sively record the environment noise for 10 minutes. In each
session, the drone starts a sequence of trajectories using the
autopilot. The drone first flies to a starting point of an orbital
path with a fixed radius and hovers in that position, waiting
for confirmation to start the orbital path. The recording pro-
cess begins as the drone receives confirmation. In addition, to
ensure the synchronization of audio and spatial data, an audio
clue (digital beep sound) was added to mark the start of the
movement. Later, the audio clue and flight log data were com-
bined to synchronize the timestamps of the spatial and audio
data. Satellite images of drone trajectories and scene setup
are shown in Fig. [} The orbital paths are two-dimensional
circles with the microphone array in the center and a constant
altitude of 30 meters above the ground. The velocity profiles
of the orbital paths are defined to have a uniform amount of
audio samples for each degree. However, this was not guaran-
teed due to wind blows, autopilot errors, and drone accelera-
tion/deceleration at the beginning/end of the path. For greater
distances, samples are taken from a single degree with the
drone hovering in a fixed radius since performing orbits was
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Fig. 2: Bearing vs. Range distribution of samples for each drone type (rows) across Train, Validation, and Test sets (columns).

Table 1: Transposed distribution of drone samples across dis-
tance bins for MINI and PRO4 models.

. MINI PRO4
Distance
Train Validation Test Overall Train Validation Test Overall

20m 1060 150 300 1510 840 113 257 1210
40m 2912 424 834 4170 2607 384 750 3741
60m 5967 899 1691 8557 4959 679 1418 7056
85m 5974 820 1695 8489 2514 383 723 3620
110m 4843 678 1371 6892 2650 383 766 3799
175m 3398 480 1011 4889 709 115 189 1013
225m 0 0 0 0 1269 186 354 1809
275m 0 0 0 0 1007 122 274 1403
Sum 24154 3451 6902 34507 16555 2365 4731 23651

Percentage (%) 41.53 5.93 11.87 59.33 2847 4.07 8.13  40.67

not feasible due to potential collisions. A breakdown of the
sample count and distributions for each drone at different dis-
tances is presented in the next section.

2.3. Data pre-processing and statistics

The pre-processing consists of the following operations. First,
the spatial data of drones w.r.t the microphone array are ex-
tracted from the flight logs. Second, audio and spatial time
stamps are synchronized, and last, audio recordings are sam-
pled and annotated with the relevant metadata.

In the first step, Haversine and forward azimuth formulas
are used to calculate the distance and bearing (angle of arrival)
between the two GPS coordinates. The Haversine formula
and forward azimuth are given as follows [[14]:

a = sin® <A2¢> + oS ¢1 €OS o sin? (A;\)
c=2-atan2 (va, V1 —a) M
d=R-c

where ¢ is latitude, A is longitude, and R is earth’s radius
(mean radius = 6,371 km).

0 = atan2 (Sin(A)\) oS ¢,
COS ¢b1 SIn g — Sin 1 COS Py cos(A/\)) )

where ¢1, A1 is the start point, and ¢2, Ao the end point (A
is the difference in longitude). The other metadata taken from
the flight logs is the date, UTC, drone model, drone altitude,
and ambient temperature. As for the second step, i.e., time
synchronization, the goal is to calibrate the timestamps of the
flight log generated by the drone and the timing of the audio
recordings. This is an essential step, as it affects the labeling
of audio samples. A small delay of one second between drone
position data and audio samples can cause a change in data
distribution and degrade quality and reliability of the dataset.
In order to have an accurate synchronization, multiple param-
eters are taken into account. Initially, the UTC timestamp of
every recording session is checked with the flight log. Then,
the audio cues are identified from the recordings, and their
timestamp in UTC is extracted. The audio cue UTC values are
then compared with the flight log data, and the timestamps are
calibrated. It is easy to find the moments at which the drone
is hovering and waiting for the signal to start its trajectory



in the flight log. The audio and flight logs are trimmed and
calibrated using location data and velocity. After the audio
and flight logs are calibrated and trimmed, the audio files are
stored with a length of 100 milliseconds and annotated with
the metadata and spatial labels from the flight logs. It should
be noted that the samples do not overlap. Each sample is an
8-channel 100ms-long audio file named in a particular con-
vention to make it easier to parse and be used in data loaders.
The dataset and the aforementioned naming convention are
available online on Zenodo [l The data distribution for an
orbital trajectory is shown in Fig. 2] where the bearing repre-
sents the DOA. It can be seen that the smaller drone, DJI Mini
2, was not as accurate as DJI Phantom Pro 4 in path tracking,
as shown in the scatter plots. The type of drone data recorded,
distances from sources, and the number of samples for both
drones are depicted in Table|T]

3. DRONE SOUND DETECTION AND DOA
ESTIMATION

Our proposed deep uncertainty-aware framework for drone
detection and localization consists of three main stages: fea-
ture extraction, neural network-based drone classification
and localization, and uncertainty modeling. The framework
utilizes log-mel spectrogram features derived from multi-
channel audio signals captured by an 8-microphone array.
Three neural network architectures— Audio Spectrogram
Transformer (AST), Conformer, and Convolutional Recur-
rent Neural Network (CRNN)—were independently trained
and evaluated within this framework to assess their effective-
ness for drone classification and localization.

The input data consists of multi-channel audio record-
ings captured using an 8-channel microphone array, sampled
at 96 kHz and segmented into 0.1-second audio clips (9600
samples each). From these recordings, log-mel spectrograms
with 64 mel frequency bands were extracted for each chan-
nel, resulting in feature tensors of shape 8 x 64 x 7', where
T represents the temporal dimension determined by the audio
segmentation and processing parameters. The log-mel spec-
trogram features effectively capture drone-specific acoustic
signatures, enabling accurate classification and localization
within the framework. The targets are scaled to enable sta-
ble learning: The bearing angle, originally defined between
0° and 360°, is shifted to [—180°, 180°] and represented us-
ing its sine and cosine components, both constrained to the
range [—1, 1]. During prediction, the sine and cosine means
are constrained using a tanh activation. The range, originally
measured between 0 and 250 meters, is linearly scaled to the
[0, 1] interval. During prediction, the mean of range is con-
strained using an activation sigmoid. Each model processes
the input spectrograms and produces a feature representation
that is passed through a shared prediction module. The shared

Uhttps://doi.org/10.5281/zenodo.6459182

prediction head outputs three types of information: a binary
classification logit indicating the type of drone class, the mean
and logarithmic variance values for the sine and cosine com-
ponents of the bearing, and the mean and logarithmic variance
for the scaled range.

Although the backbone architectures differ, they are
adapted into the framework as follows: for AST, the input
spectrogram is patched and projected into an embedding
space. A Transformer encoder processes the sequence of
patches, and the representation corresponding to the clas-
sification ([CLS]) token is used as input to the prediction
head. For Conformer, a convolutional frontend first extracts
local representations, which are then linearly projected and
passed through a stack of Conformer layers to model tempo-
ral dependencies. Global average pooling across the temporal
dimension generates the feature vector fed into the prediction
head. For CRNN, a convolutional encoder extracts features,
which are flattened and processed through a bidirectional
GRU to capture temporal patterns. The outputs are glob-
ally average pooled across time before being passed into the
prediction head.

Algorithm 1 Training and Prediction with Conformer

Require: Mini-batch X € RE*8x64xT
Ensure: Class logit z, sine mean pug,, sine log-variance
log 02, cosine mean ficos, cosine log-variance log o2,

range mean i,., range log-variance log o2

1: for each mini-batch X do

2 F« CNN(X)

3: S « Project(F)

4 H « Conformer(S)

5. h + GlobalAvgPool(H)

6 {z, (ksin,log USQin)’ (Hcos; log 0305)7 (1, log 0'7%)} —
PredictionHead(h)

7: end for

8: for each target (yclassa Ysin, Yeos yr) do
: £cls — BCE(Z, yclass)

10:  Lgin ¢ 0.5 x exp(—1logo2,) X (Ysin — Hsin)? + 0.5 x
log Ugin

11: Leos < 0.5 xexp(—1logo2..) X (Yeos — Heos)? +0.5 X

log O—(%OS

122 L, « 0.5xexp(—logo?) x (y, — pu,)? +0.5 x log 02

13: end for

14: Etotal A £cls + Lsin + Ecos + £7'

15: Update model parameters using backpropagation with

Etotal

To capture uncertainty, the framework employs a het-
eroscedastic modeling approach for both bearing and range
estimation. For each target variable (sine of bearing, cosine
of bearing, and range), the models predict both a mean and
a log-variance value. The loss function used for training
combines binary cross-entropy (BCE) for drone classification
and negative log-likelihood (NLL) for each regression target,



assuming Gaussian distributions with input-dependent vari-
ances. Formally, given a prediction mean p and log-variance
log 02 for a target y, the heteroscedastic regression loss is
defined as:

Lhet = 0.5 x exp(—logo?) x (y — pu)? + 0.5 x loga® (3)

This allows the model to express higher uncertainty for am-
biguous or noisy inputs. The total loss used for training is the
sum of the classification loss and the heteroscedastic regres-
sion losses:

Etotal = ﬁcls + Esin + Ecos + Lr (4)

where L is the binary cross-entropy loss for classification,
and Lgin, Leos, and L£,. are the heteroscedastic losses for sine,
cosine, and range predictions, respectively.

All neural network models within the framework were
trained using an NVIDIA A100 GPU. Training involved opti-
mizing a combined loss function consisting of BCE and het-
eroscedastic regression losses, as outlined in Algorithm [I]
Optimization was performed using the Adam optimizer, with
a learning rate of 1 x 10~4, and a batch size of 32.

4. EXPERIMENTS AND RESULTS

Table 2: Prediction and uncertainty performance on the test
set.

Prediction Metrics AST Conformer CRNN
# of Parameters 33,285,127 2,575,687 7,915,911
Accuracy (%) 97.59 99.93 99.94
Precision (%) 97.51 99.87 99.87
Recall (%) 96.56 99.96 99.98
F1 Score (%) 97.03 99.92 99.93
Range MAE (m) 16.33 5.20 4.77
Bearing MAE (°) 31.89 11.44 11.78
Euclidean MAE (m) 43.43 16.05 15.76
Uncertainty Metrics

Coverage@ 1o (%) 72.97 56.20 50.52
Coverage@20 (%) 95.42 85.47 79.55
Coverage@3o (%) 99.05 97.12 90.90
Within 1o (%) 72.97 56.20 50.52
lo—20 (%) 22.45 29.28 29.03
20-30 (%) 3.63 11.64 11.35
Outside 30 (%) 0.95 2.88 9.10
Mean Harmonic Var (Angle) 0.21726 0.02981 0.01142
Mean Harmonic Var (Range) 0.32578 0.04466 0.01712

In this section, we present the experimental results ob-
tained from independently training and evaluating three neu-
ral network architectures AST, Conformer, and CRNN within
the proposed framework. Evaluation was performed on a test
set comprising 11,632 real-world multi-channel drone audio
recordings. Model performance was assessed in terms of clas-
sification accuracy, precision, recall, Fl-score, localization
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error (range, bearing, and Euclidean MAE), and uncertainty
estimation metrics.

Table2]summarizes the results for model complexity, pre-
diction performance, and uncertainty evaluation. In terms of
classification and localization performance, CRNN achieved
the highest overall classification accuracy (99.94%) and the
lowest range and Euclidean localization errors (4.77 m and
15.76 m), respectively. Conformer followed closely with
no significant difference compared to CRNN in localization
errors. In contrast, AST demonstrated substantially higher
localization errors, with a Euclidean MAE of 43.43 m, indi-
cating limited suitability for precise localization tasks. For
uncertainty estimation, AST achieved coverage closest to
the theoretical 68-95-99.7% rule expected under a Gaussian
assumption, outperforming the other architectures in terms
of coverage consistency. Here, coverage refers to the pro-
portion of test cases where the ground truth position falls
within the predicted confidence intervals derived from the
mean and standard deviation outputs of the model. Con-
former ranked second in uncertainty coverage, while CRNN
exhibited poorer calibration, with 9.10% of the predictions
falling outside the 30 confidence interval. However, despite
the strong coverage of AST, its predicted uncertainty vari-
ances were significantly higher than those of Conformer and
CRNN, reflecting a broader spread and lower sharpness of
the predictive distributions. This high variance, combined
with its poorer localization performance, limits the practical



reliability of AST in this framework. Conformer provided the
best balance across all aspects: achieving high classification
and localization performance, reliable uncertainty calibration,
and the smallest model size with approximately 2.6 million
parameters, compared to 7.9 million for CRNN and 33 mil-
lion for AST. This highlights Conformer-based architecture
as the most suitable choice among the three for drone classi-
fication and localization with the proposed framework. The
uncertainty estimations in Figure [3| show how the predicted
confidence regions relate to the true error. The dashed con-
tours represent 30 confidence regions. The well-calibrated
prediction shows uncertainty that aligns with the actual dif-
ference between the predicted and ground-truth positions,
whereas the underconfident and overconfident predictions
reflect poor calibration by overestimating or underestimating
the uncertainty of the model. To the best of our knowledge,
this is the first work to incorporate and visualize localization
uncertainty in the context of drone localization on an acoustic
dataset, marking a novel contribution to the field.

5. CONCLUSION

We have introduced a novel audio dataset for drone detec-
tion and localization. The dataset comprises real drone audio
recordings captured with an 8-channel microphone array and
supports both classification and localization tasks. In addition
to the dataset, we propose a unified deep learning framework
that jointly performs classification and localization while
modeling input-dependent aleatoric uncertainty through a
heteroscedastic loss. Three baseline architectures—AST,
Conformer, and CRNN—are implemented and evaluated
within this framework. Experimental results demonstrate that
the proposed framework achieves accurate classification and
localization performance, with the Conformer backbone per-
forming the best, suggesting the effectiveness of the dataset
as a benchmark.
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